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Parameters for Integrating Periodic Functions 
of Several Variables 

By Seymour Haber 

Abstract. A number-theoretical method for numerical integration of periodic functions of 
several variables was developed some years ago. This paper presents lists of numerical 
parameters to be used in implementing that method. The parameters define quadrature 
formulas for functions of 2, 3,..,8 variables; error bounds for those formulas are also 
tabulated. The derivation of the parameters and error bounds is described. 

1. Introduction. About twenty years ago, N. M. Korobov and E. Hlawka dis- 
covered a remarkable family of formulas for numerical quadrature of periodic 
functions of several variables [13]-[15], [8], [9]. To fix our notation, let us suppose 
that the function to be integrated has period 1 in each of its variables. Let "s" 
denote the number of variables and let the integration region be the unit cube [0, 1]s 

which we shall denote "Gs", following Korobov. The formulas then take the form 

( I ) > JG f 
f ~ 

QN f N2 f (-Na 

where a (_ a(N)) is an s-vector of integers that lie in [1, N]. The accuracy of the 
formula apparently depends on number-theoretic properties of the set of the integers 
in a. Korobov and Hlawka showed that, as N runs through the sequence of primes, it 
is possible to find vectors a(N) such that the quadrature error 

(2) R f If- QNf =O(N-alogI6N) 

(for some a and /) for integrands f belonging to certain smoothness classes which 
we shall define below; and that for those classes this convergence is much faster than 
that afforded by the iterated (or Cartesian product) trapezoid rule. 

Korobov called such vectors a(N) (or their components) "optimal coefficients," 
and Hlawka called them (with a slightly more stringent definition) "good lattice 
points". The quadrature method has become known variously as the method of 
"good lattices" or of "parallelepipedal nets." The reason is that the quadrature 
nodes in (1) can all be referred to the cube Gs by reducing each component "modulo 
1"-i.e. to its fractional part. (This uses the periodicity of the integrand in each 
variable.) The resulting N points in Gs turn out to be lattice points of a certain 
slanted lattice (see e.g. [7] for illustrations of the 2-dimensional case). Geometrical 
properties of these lattices are intimately related to the accuracy of the quadrature 
formulas. 
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The proof of the existence of good lattice points was constructive, but the method 
indicated for finding them involved very large amounts of computation for the 
values of N and s that are of most interest for numerical integration. This, together 
with the restriction of the number of quadrature nodes to a prime number (though 
Korobov did show that a product of 2 distinct primes was also all right) inhibited the 
use of the method of good lattices. Some sets of good lattice points were calculated, 
however (see e.g. [11], [16], [19]). Recently, these have been successfully used in 
various applications, and the method is receiving attention from chemists and 
physicists [3], [4], [21]. 

Numerical evidence [16] and also theoretical evidence [22] suggested that the 
condition that N be prime is not necessary. In 1973, P. Keast showed the existence 
of good lattice points a(N) whenever N is square-free [12], and S. K. Zaremba [23] 
showed their existence for all sufficiently large N. In 1978, H. Niederreiter [17] 
showed that they exist for all N. Thus, it should be possible to provide a(N)'s for 
sequences of values of N that are convenient for practical numerical quadrature. The 
present paper provides such sequences -for dimensions s = 2,3,...,8 and for N = 
22, 2 ,2,... . 2', together with the intermediate values N 3 -2,3 .22 . 3. 2's. 
The method of calculation is one that was originally suggested in [6]. 

A recent survey of the method of good lattices, with extensive references to the 
literature, is contained in Section 4 of [18]. 

2. Error Bounds and the Search for Good Lattice Points. Korobov [14, pp. 29-31 
and 146-156] described essentially the following scheme for obtaining error bounds 
for the quadrature formulas under discussion: Since our integrands are periodic, we 
shall classify them in terms of the speed of convergence of their Fourier series-which 
is known to be connected with the smoothness of the function. For any real a > 1, 
let Es be the class of all functions f of s variables, of period 1 in each variable, whose 
Fourier series 

00 

(3) I c(m)e2Timx 
ni M, , =- 

converges to f(x) and satisfies the condition 

(4) 1 c(m)I< K II maxf 1 iMr 1) 
r= I 

for some constant K = K( f ). The particular function Fso defined by 

00 s Of 

(5) Fs5(x) = Ei max{l,Imr 1 e2iTm x 
m m=-oo\i r=l 

turns out to be a kind of extremal function for the class Es: for any formula of the 
form (1), and any f Es, 

(6) IRNfI?K(f)IRN al; 

and this bound is sharp. 
The idea of "goodness" for a sequence of lattice points can be defined precisely, 

in terms of the F- as follows: 
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Definition. For a > 1 a "good lattice point sequence" for Es is a sequence of 
integral s-vectors 
(6a) a(N, ), a(N2) 

-corresponding to an infinite sequence N, < N2 <N3< ... of positive integers- 
such that the quadrature errors 

(7a) R,,v- jN E Fa r a(N)) N-= N,7 N,.. 

satisfy 
(7b) IRNFa aI CN-Logf3N 

for some numbers C and /3 independent of N. 
By (6), such a sequence then affords an error bound of the same form as in (7b) 

for any functionf in Esa. 
An important property of the Korobov and Hlawka lattice points is that they are 

good for Es, in this sense, for all values of a simultaneously. (The constants C and /3 
of (7b) will vary with a.) This makes it unnecessary, when calculating an integral, to 
seek a formula that is suited to the smoothness of the specific integrand-which may 
be unknown. The Korobov-Hlawka formulas will automatically use all the smooth- 
ness the integrand has, to provide rapid convergence. 

Indeed it is the case that any s-dimensional lattice point sequence that is good for 
E$5 for a single a > 1 is good for all a > 1 and is "optimal" or "good" in the senses 
of Korobov and Hlawka. (This follows from the proof of Theorem 23 of [14].) So to 
find good lattice points it is sufficient, for each s and N, to find an a(N) that 
minimizes I RNFs I, for some single value of a. This is Korobov's basic method. 

For a = 2, Fs' can be written in the closed form 

(8) Fsa(x) - I (1 + 21T2(X2 - Xr + 1/6)) 
r= 1 

for x E Gs; for x outside Gs the value of Fsa is determined by periodicity. This makes 
the calculation of RNFJ particularly convenient. But it is still not practicable to 
calculate it for all Ns possible lattice points a, to find a minimizing one-if N is even 
moderately large, and s is greater than 1 or 2. 

However, it turns out that good lattice points are not unique or rare, but are quite 
common. It follows from Korobov's existence proof, for example, that for prime 
values of N half or more of all the possible lattice points a can be used in good 
lattice point sequences. Niederreiter's proof for general N implies the same, for the 
special set of lattice points a all of whose components are relatively prime to N. 
These facts suggest a search procedure for finding good lattice points. For any given 
s and N, choose at random some number M of lattice points, all of whose 
components are prime to N. For each one, calculate the error coefficient I RNF I; a 
point for which the calculated error coefficient is least is very likely to be a good 
lattice point. That is the calculation-with M = 40-whose results we report here, 
but with one difference. The lattice points a = (a,, a2,....as) that were tried were 
all of the form 
(9) ar= the residue of br-I mod N, r = 1, 2,.. . ,s. 

For each s and N we used 40 odd integers b, chosen at random in [3, N - 3]. 
Korobov showed [14, pp. 148-149] that most a's of the special form (9) can be used 
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for good lattice point sequences, when N is prime. The numerical evidence presented 
below indicates that they also work well for general N. These special a's have the 
practical advantage that the resulting quadrature formula (1) is fully defined by the 
single integer b rather than by s integers. 

(We also deviated in a minor way from the search procedure described above in 
that we did not specify, when N was divisible by 3, that the randomly chosen values 
of b must not be divisible by 3. So in fact some of the lattice points that were tried 
out did not have all their components relatively prime to N. Interestingly, some of 
those were nevertheless successful-giving the lowest value found for I RNF2 , for 
the particular N and s.) 

3. The Parameters. Tables 1, 2,.. ., 7 present the parameters obtained for integra- 
tion formulas of the form (1), for dimensions 2, 3,...,8, respectively. In each table, 
the first column lists the values of N, the second the values of the integration 
parameter b of formula (9), and the next 3 columns list the error bound coefficients 

I RNTJ' I of (6), for a = 2, 4, and 6, respectively. The numbers in parentheses 
indicate the powers of 10. 

The calculations were done on the UNIVAC 1108 at the National Bureau of 
Standards, with the final error bound coefficients being calculated in double 
precision. Due to roundoffs, the calculated bounds were in error by quantities of the 
order of 10-17. As a result, we state to only one significant figure those coefficients 
that are of the order of 10-16, and those that are less than 10-17 are not reported at 
all. We have included error bound coefficients between 10-17 and 10-16, stated to 
one significant figure, but those results are not reliable. 

4. Practical Considerations. One of the most attractive features of quadrature by 
the good lattice point method is that the accuracy-as seen in the error bounds (2) 
and (7b)-appears to be almost independent of the dimensionality s. This contrasts 
sharply with what happens when multiple integrals are evaluated using Cartesian 
products of 1-dimensional quadrature rules. In that situation, the rate of conver- 
gence takes the form N-0/S, where y is some number characteristic of the smooth- 
ness of the integrand and N is the number of times the integrand is to be evaluated 
(see pp. 488-489 of [5]). For example, the Cartesian product trapezoid rule applied 
to functions of Ef5 may give convergence no faster than N-a/s that will happen, in 
fact, for the function Fs' defined above. For s > 2 that is much poorer than the 
N` log:N of (7b). This is so attractive that ways have been sought to apply good 
lattice points to nonperiodic integrands. A simple one is as follows: For s = 1, 
replace the integrand f(x) by the function g(x) = (f(x) + f(1 - x))/2. The in- 
tegral of g is equal to that of f, and g is somewhat periodic: g(0) = g(1). For s = 2, 
use 

g(X1, X2) = 4*{f(X, X2) +f(l - X1, X2) +(x, 1f - X2) +f(l - X1, 1 -X2) 

with similar formulas in higher dimensions. These g's will belong to Es2, if the 
original integrand f is sufficiently smooth-a sufficient condition is that all mixed 
partial derivatives, that are of order 1 or less with respect to each variable, exist and 
are continuous on Gs. There are more complicated methods of "periodizing" 
integrands which can produce functions in Es' with a > 2. They are discussed in [14, 
pp. 52-65], and in [10, pp. 121-130]. 
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TABLE 1: S = 2 

N b IRNF2I IRNF24 IRNF26 

4 1 3.88 (0) 2.10 (0) 2.01 (0) 

6 1 2.94 (0) 2.03 (0) 2.01 (0) 

8 3 1.09 (0) 6.55 (-2) 6.26 (-3) 

12 5 5.57 (-1) 1.66 (-2) 7.84 (-4) 

16 7 3.73 (-1) 1.04 (-2) 5.31 (-4) 

24 9 1.66 (-1) 1.34 (-3) 1.64 (-5) 

32 9 1.24 (-1) 1.24 (-3) 2.11 (-5) 

48 21 5.28 (-2) 1.60 (-4) 8.49 (-7) 

64 27 3.16 (-2) 4.64 (-5) 1.05 (-7) 

96 21 1.66 (-2) 1.74 (-5) 3.09 (-8) 

128 29 9.53 (-3) 4.72 (-6) 4.17 (-9) 

192 51 4.85 (-3) 1.33 (-6) 5.50 (-10) 

256 99 2.49 (-3) 2.13 (-7) 2.71 (-11) 

334 141 1.14 (-3) 3.95 (-8) 2.03 (-12) 

512 189 7.22 (-4) 1.90 (-8) 7.76 (-13) 

768 225 3.21 (-4) 3.12 (-9) 4.44 (-14) 

1024 399 2.15 (-4) 1.95 (-9) 2.86 (-14) 

1536 447 9.13 (-5) 2.66 (-10) 1.2 (-15) 

2048 849 6.89 (-5) 3.54 (-10) 3.8 (-15) 

3072 1273 2.53 (-5) 1.97 (-11) 4(?) (-17) 

4096 1787 1.66 (-5) 1.11 (-11) -- 

6144 2269 7.12 (-6) 1.69 (-12) -- 

8192 3453 4.39 (-6) 8.56 (-13) -- 

12288 5181 1.86 (-6) 1.04 (-13) __ 

16384 6279 1.19 (-6) 5.45 (-14) -- 

24576 7301 5.10 (-7) 7.6 (-15) -- 

32768 5133 3.87 (-7) 8.7 (-15) -- 

49152 6503 1.80 (-7) 1.8 (-15) -- 

65536 27627 1.04 (-7) 6. (-16) -- 

98304 29153 4.32 (-8) 6(?) (-17) -- 

131072 34613 2.38 (-8) 2(?) (-17) -- 
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TABLE 2: s 3 

2 4 6 
N b IRNF3I IRNF3I IRNF31 

4 1 1.88 (1) 7.09 (0) 6.22 (0) 

6 1 1.34 (1) 6.50 (0) 6.10 (0) 

8 3 8.57 (0) 2.57 (0) 2.11 (0) 

12 3 5.54 (0) 2.16 (0) 2.02 (0) 

16 5 3.51 (0) 3.44 (-1) 7.00 (-2) 

24 3 1.92 (0) 9.64 (-2) 9.14 (-3) 

32 11 1.42 (0) 6.65 (-2) 6.19 (-3) 

48 9 7.21 (-1) 1.45 (-2) 6.26 (-4) 

64 5 5.64 (-1) 1.08 (-2) 3.55 (-4) 

96 39 2.85 (-1) 3.04 (-3) 6.52 (-5) 

128 41 1.76 (-1) 7.11 (-4) 5.22 (-6) 

192 39 9.17 (-2) 1.93 (-4) 6.92 (-7) 

256 37 5.91 (-2) 8.85 (-5) 2.47 (-7) 

384 81 2.78 (-2) 1.22 (-5) 9.33 (-9) 

512 123 1.97 (-2) 8.80 (-6) 7.46 (-9) 

768 75 9.69 (-3) 2.45 (-6) 1.38 (-9) 

1024 173 6.69 (-3) 1.17 (-6) 3.92 (-10) 

1536 375 3.41 (-3) 3.36 (-7) 6.68 (-11) 

2048 753 2.04 (-3) 9.53 (-8) 8.55 (-12) 

3072 1491 1.30 (-3) 1.22 (-7) 2.50 (-11) 

4096 1271 8.85 (-4) 2.65 (-8) 1.31 (-12) 

6144 1907 3.64 (-4) 3.46 (-9) 6.53 (-14) 

8192 2835 2.11 (-4) 8.66 (-10) 6.6 (-15) 

12288 2469 1.30 (-4) 7.29 (-10) 7.9 (-15) 

16384 1163 8.00 (-5) 2.03 (-10) 1.2 (-15) 

24576 7223 3.39 (-5) 2.89 (-11) 8(?) (-17) 

32768 8655 2.06 (-5) 1.20 (-11) 2(?) (-17) 

49152 14441 1.34 (-5) 6.88 (-12) 5(?) (-17) 

65536 22201 5.93 (-6) 1.06 (-12) -- 

98304 12525 2.93 (-6) 2.59 (-13) -- 

131072 42445 2.35 (-6) 3.70 (-13) -- 
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TABLE 3: s 4 

N b IRNF42 IRNF44 IRNF4 

4 1 8.38 (1) 2.46 (1) 2.09 (1) 

6 1 5.74 (1) 2.03 (1) 1.85 (1) 

8 3 4.17 (1) 1.23 (1) 1.05 (1) 

12 3 2.60 (1) 7.31 (0) 6.24 (0) 

16 5 2.03 (1) 5.31 (0) 4.28 (0) 

24 3 1.22 (1) 2.67 (0) 2.12 (0) 

32 3 9.82 (0) 2.55 (0) 2.11 (0) 

48 21 5.22 (0) 3.80 (-1) 7.30 (-2) 

64 21 3.83 (0) 2.37 (-1) 4.10 (-2) 

96 21 2.23 (0) 7.46 (-2) 6.38 (-3) 

128 21 1.55 (0) 2.92 (-2) 1.32 (-3) 

192 5 9.01 (-1) 1.32 (-2) 4.43 (-4) 

256 39 6.14 (-1) 4.61 (-3) 8.09 (-5) 

384 187 3.25 (-1) 1.06 (-3) 8.35 (-6) 

512 107 2.53 (-1) 9.70 (-4) 7.71 (-6) 

768 197 1.40 (-l) 2.96 (-4) 1.52 (-6) 

1024 493 9.13 (-2) 1.10 (-4) 2.90 (-7) 

1536 369 5.73 (-2) 8.96 (-5) 3.17 (-7) 

2048 941 3.85 (-2) 2.49 (-5) 3.47 (-8) 

3072 501 1.92 (-2) 4.72 (-6) 2.08 (-9) 

4096 2023 1.32 (-2) 3.06 (-6) 1.39 (-9) 

6144 2679 6.67 (-3) 1.15 (-6) 5.99 (-10) 

8192 539 3.96 (-3) 1.88 (-7) 2.05 (-11) 

12288 2187 2.53 (-3) 1.92 (-7) 3.74 (-11) 

16384 2037 1.58 (-3) 4.35 (-8) 2.55 (-12) 

24576 6833 8.19 (-4) 1.71 (-8) 9.00 (-13) 

32768 11579 6.19 (-4) 1.54 (-8) 1.05 (-12) 

49152 2999 2.88 (-4) 1.06 (-9) 8.2 (-15) 

65536 18793 1.90 (-4) 5.42 (-10) 2.7 (-15) 

98304 1497 1.15 (-4) 2.75 (-10) 1.2 (-15) 

131072 2771 6.46 (-5) 1.32 (-10) 6 (-16) 
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TABLE 4: s 5 

2 4 6 
N b IRNF51 IRNF51 IRNF51 

4 1 3.63 (2) 7.85 (1) 6.36 (1) 

6 1 2.45 (2) 6.04 (1) 5.20 (1) 

8 3 1.81 (2) 3.92 (1) 3.18 (1) 

12 3 1.15 (2) 2.53 (1) 2.10 (1) 

16 5 8.99 (1) 1.88 (1) 1.50 (1) 

24 3 5.72 (1) 1.26 (1) 1.05 (1) 

32 5 4.34 (1) 6.82 (0) 4.58 (0) 

48 21 2.80 (1) 5.47 (0) 4.29 (0) 

64 13 2.02 (1) 1.50 (0) 3.09 (-1) 

96 21 1.37 (1) 2.63 (0) 2.12 (0) 

128 3 9.63 (0) 5.97 (-1) 1.12 (-1) 

192 3 5.66 (0) 2.71 (-1) 4.39 (-2) 

256 21 4.06 (0) 6.80 (-2) 2.73 (-3) 

384 141 2.82 (0) 1.72 (-1) 3.49 (-2) 

512 151 1.82 (0) 2.60 (-2) 1.16 (-3) 

768 9 1.07 (0) 7.46 (-3) 1.31 (-4) 

1024 363 7.35 (-1) 2.92 (-3) 3.04 (-5) 

1536 297 5.01 ('-1) 2.70 (-3) 3.04 (-5) 

2048 659 3.04 (-1) 6.08 (-4) 2.93 (-6) 

3072 1425 1.89 (-1) 5.50 (-4) 4.68 (-6) 

4096 661 1.34 (-1) 1.74 (-4) 5.06 (-7) 

6144 2291 7.48 (-2) 5.01 (-5) 8.01 (-8) 

8192 3333 4.83 (-2) 2.34 (-5) 3.90 (-8) 

12288 4999 3.08 (-2) 1.21 (-5) 1.41 (-8) 

16384 2705 2.06 (-2) 4.44 (-6) 2.40 (-9) 

24576 2453 1.20 (-2) 1.95 (-6) 1.04 (-9) 

32768 145 8.81 (-3) 8.66 (-7) 1.77 (-10) 

49152 1509 4.07 (-3) 1.61 (-7) 1.85 (-11) 

65536 18351 3.04 (-3) 1.55 (-7) 2.00 (-11) 

98304 24093 1.70 (-3) 6.76 (-8) 6.00 (-12) 

131072 2771 1.09 (-3) 2.50 (-8) 1.70 (-12) 
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TABLE 5: s = 6 

2 4 6 
N b I RNF6I I RNjF6I lRNF6 I 

4 1 1.56 (3) 2.51 (2) 1.95 (2) 

6 1 1.05 (3) 1.83 (2) 1.50 (2) 

8 3 7.78 (2) 1.25 (2) 9.65 (1) 

12 3 4.95 (2) 8.07 (1) 6.38 (1) 

16 5 3.89 (2) 6.14 (1) 4.73 (1) 

24 3 2.48 (2) 4.03 (1) 3.19 (1) 

32 3 1.94 (2) 3.05 (1) 2.36 (1) 

48 3 1.24 (2) 1.94 (1) 1.50 (1) 

64 11 9.38 (1) 9.35 (0) 5.08 (0) 

96 45 5.99 (1) 7.07 (0) 4.61 (0) 

128 5 4.42 (1) 2.47 (0) 4.88 (-1) 

192 51 2.86 (1) 1.64 (0) 3.21 (-1) 

256 123 2.18 (1) 1.12 (0) 2.14 (-1) 

384 141 1.40 (1) 6.77 (-1) 1.19 (-1) 

512 3 9.64 (0) 3.42 (-1) 5.01 (-2) 

768 9 6.25 (0) 2.23 (-1) 3.84 (-2) 

1024 491 4.62 (0) 7.06 (-2) 3.43 (-3) 

1536 341 2.80 (0) 2.82 (-2) 9.17 (-4) 

2048 443 2.13 (0) 2.22 (-2) 7.97 (-4) 

3072 1095 1.34 (0) 1.30 (-2) 5.43 (-4) 

4096 1271 8.95 (-1) 2.70 (-3) 1.98 (-5) 

6144 1477 5.33 (-1) 1.14 (-3) 6.56 (-6) 

8192 67 3.56 (-1) 3.49 (-4) 8.37 (-7) 

12288 5685 2.37 (-1) 3.63 (-4) 1.74 (-6) 

16384 7011 1.62 (-1) 1.64 (-4) 5.32 (-7) 

24576 3771 1.04 (-1) 1.12 (-4) 3.85 (-7) 

32768 4335 6.71 (-2) 1.94 (-5) 1.39 (-8) 

49152 1509 3.44 (-2) 5.83 (-6) 2.90 (-9) 

65536 24565 2.95 (-2) 4.09 (-6) 1.31 (-9) 

98304 40709 1.70 (-2) 2.44 (-6) 9.52 (-10) 

131072 33269 1.40 (-2) 2.80 (-6) 1.61 (-9) 
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TABLE 6: s 7 

2 4 6 
N b IRNF71 IRNF71 IRNF71 

4 1 6.69 (3) 7.94 (2) 5.92 (2) 

6 1 4.47 (3) 5.60 (2) 4.34 (2) 

8 3 3.35 (3) 3.96 (2) 2.95 (2) 

12 3 2.13 (3) 2.58 (2) 1.96 (2) 

16 5 1.67 (3) 1.98 (2) 1.48 (2) 

24 3 1.07 (3) 1.28 (2) 9.68 (1) 

32 5 8.35 (2) 9.87 (1) 7.37 (1) 

48 3 5.31 (2) 6.31 (1) 4.75 (1) 

64 11 4.15 (2) 4.29 (1) 2.92 (1) 

96 21 2.65 (2) 3.14 (1) 2.37 (1) 

128 5 2.05 (2) 1.99 (1) 1.35 (1) 

192 45 1.31 (2) 1.16 (1) 7.07 (0) 

256 99 9.98 (1) 6.23 (0) 2.79 (0) 

384 51 6.19 (1) 2.66 (0) 5.03 (-1) 

512 93 4.91 (1) 2.24 (0) 4.28 (-1) 

768 333 3.07 (1) 1.23 (0) 2.23 (-1) 

1024 141 2.26 (1) 9.19 (-1) 1.95 (-1) 

1536 297 1.41 (1) 3.15 (-1) 4.30 (-2) 

2048 683 1.05 (1) 2.28 (-1) 2.07 (-2) 

3072 39 7.05 (0) 1.29 (-1) 9.30 (-3) 

4096 1159 5.08 (0) 4.64 (-2) 1.65 (-3) 

6144 1731 3.3? (0) 4.77 (-2) 3.52 (-3) 

8192 3091 2.38 (0) 1.10 (-2) 1.49 (-4) 

12288 4611 1.38 (0) 4.65 (-3) 4.99 (-5) 

16384 2037 1.14 (0) 1.00 (-2) 5.04 (-4) 

24576 4059 6.97 (-1) 3.19 (-3) 5.75 (-5) 

32768 453 4.58 (-1) 6.27 (-4) 3.32 (-6) 

49152 12295 3.10 (-1) 5.83 (-4) 4.87 (-6) 

65536 4855 1.94 (-1) 1.37 (-4) 3.64 (-7) 

98304 237 1.35 (-1) 1.24 (-4) 4.01 (-7) 

131072 33269 9.27 (-2) 5.32 (-5) 1.37 (-7) 
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TABLE 7: s 8 

N b IRNF82 IRNF8I IRNF81 

4 1 2.87 (4) 2.52 (3) 1.80 (3) 

6 1 1.92 (4) 1.74 (3) 1.28 (3) 

8 3 1.44 (4) 1.26 (3) 8.99 (2) 

12 3 9.13 (3) 8.16 (2) 5.94 (2) 

16 5 7.17 (3) 6.29 (2) 4.50 (2) 

24 3 4.57 (3) 4.07 (2) 2.96 (2) 

32 5 3.59 (3) 3.14 (2) 2.24 (2) 

48 21 2.29 (3) 2.04 (2) 1.48 (2) 

64 11 1.79 (3) 1.51 (2) 1.05 (2) 

98 2l l.lA (3) 1.02 (2) 7.39, (1) 

128 35 8.95 (2) 7.59 (1) 5.31 (1) 

192 51 5.68 (2) 4.72 (1) 3.31 (1) 

256 99 4.44 (?) 3.39 (1) 2.25 (1) 

384 51 2.80 (2) 2.05 (1) 1.36 (1) 

512 92 2. 1/ (2) 1.29 (I) 7.23 (0) 

768 237 1.37 (2) 4.75 (0) 8.69 (-1) 

1024 141 1.03 (2) 4.86 (0) 2.54 (0) 

1536 291 6.83 (1) 2.34 (0) 4.30 (-1) 

2048 443 5.04 (1) 1.42 (0) 2.69 (-1) 

3072 1229 3.31 (1) 8.36 (-1) 1.43 (-1) 

4096 595 2.54 (1) 6.66 (-1) 1.13 (-1) 

6144 1923 1.62 (1) 3.40 (-1) 4.56 (-2) 

8192 2153 1.15 (1) 1.07 (-1) 4.98 (-3) 

12288 4251 7.56 (0) 5.59 (-2) 1.57 (-3) 

16384 6957 5.64 (0) 3.15 (-2) 8.87 (-4) 

24576 10517 3.85 (0) 2.45 (-2) 5.62 (-4) 

32768 453 2.45 (0) 5.56 (-3) 5.31 (-5) 

49152 1509 1.73 (0) 8.68 (-3) 1.62 (-4) 

65536 25219 1.21 (0) 3.01 (-3) 3.20 (-5) 

98304 40709 7.54 (-1) 8.33 (-4) 2.98 (-6) 

131072 11495 5.87 (-1) 1.21 (-3) 1.13 (-5) 
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However, looking through the tables quickly shows that the error bound coeffi- 
cients I RN,,JF I are not entirely independent of s. Focusing on a = 2, we see that 

R1024 s2 grows rapidly with s: from .000215 for s = 2, through .00669, .0913, .735, 
4.62, 22.6, to 103 for s= 8. This is partly due to the dependence on s of the 
exponent /B in the error bound in (7b); the nature of this dependence is not entirely 
known, and will be discussed below. The constant C in (7b) may also depend on 
s-the numerical evidence suggests that it decreases as s increases. 

With Cartesian product formulas it seems, from the convergence rate N-Y/s, that 
the computational effort (measured by the value of N) that is needed to achieve a 
given level of accuracy will rise exponentially as s increases. To get an idea of what 
happens in the method of good lattice points, we may fix a = 2, for example, and 
look, for each s, at the value of N that brings I RNF7 I down to a prescribed 
level-say 0.1 (This is of course not the same as asking what value of N will give an 
absolute error, or relative error, of 0.1 for any particular integrand of interest-other 
than F2 itself.) The results we obtain, by interpolating very roughly in Tables 1-7, 

s 2 3 4 5 6 7 

N 35 180 900 5,000 25,000 125,000 

Similar results are obtained when 0.1 is replaced by some other number-1.0, or 
0.01. It seems that for the function classes E7 , the N required for any given level of 
accuracy does increase with s, roughly as fast as 55, when the formulas of the present 
paper are used. For E 4, a similar calculation indicates that the increase is roughly as 
2.5'. 

So the good lattice point method does not entirely overcome the "curse of 
dimensionality". But it does mitigate it. To compare, if the trapezoid rule were to 
require N. evaluation points to integrate F,2 to some given level of accuracy-and N( 
might be 2, or 10, or 100, then the Cartesian product trapezoid rule would require N(' 
to evaluate F2 to similar accuracy. In contrast, the 5' growth rate for the good lattice 
point formulas is roughly independent of the level of accuracy. 

5. Discussion. There is another method for obtaining lattice points that may be 
"'good" in the sense discussed here, and that does not require even as much 
calculation as does our random search. That is the method of L. K. Hua and Y. 
Wang, which is based on concepts of algebraic number theory and diophantine 
approximation. A full exposition can be found in [10], and a short description in 
Section 2 of [6]. It is not known whether this method actually produces good lattice 
points, but the numerical evidence suggests that it does. A number of lattice points 
have been calculated by this method, together with corresponding error bound 
coefficients; see Tables I-III of [6], and the entries marked by asterisks in Tables 
1-12 (pp. 224-234) of [10]. A comparison of the values of 1 RNF'7 given there 
(called "B" in [6], and "W2(n, h)" in [10]) with those given in the tables above 
indicates that for s = 3, 4, and 5 the quadrature formulas obtained by the method of 
Hua and Wang have considerably larger error bound coefficients than those pro- 
duced by the random search method. However, for s = 6 and 7, the error bound 
coefficients obtained by the two methods are fairly close. (This is perhaps best seen 
when the coefficients are plotted in the manner of Figure 1 below.) The Hua-Wang 
method is restricted to certain sequences of values of N. 
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One important piece of information, that has not yet been provided by the 
theoretical developments, is the best possible value of /3 in the error estimate (7b). 
Calling this lowest /3 (or the inf of all such /3) ",*", we might expect that /3* will be 
a function of a and s in general. Indeed Korobov and Hlawka (see e.g. [14, pp. 
95-102]) showed that /3* < sa, and N. S. Bahvalov [1] improved this to /3* < 

(s - 1)a. In the opposite direction, all that is known is that /3* > s - 1 for all a > 1 
[20]. The only definitive result is that, for s = 2, /3* =1 independently of a [1]. 

Thus it is interesting to see what values of /3 are indicated by the numerical results 
presented above. Figure 1 shows the result of plotting log (N2 I RNF2 I) versus 
log (log(N)) for the calculated values of RNFJ. (Only those values with RNJi < 10 
were included in the graph. Examination of the tables above shows that convergence 
faster than 0(1/N) does not begin to be apparent until the error bound coefficient 
drops to between 10 and 1; the higher values (for lower N) are controlled by factors 
different from those determining the asymptotic convergence rate.) The points group 
themselves naturally into seven approximate lines, depending on the dimension 
number s; s 2 is at the bottom, s 8 at the top. 

I ~ ~ ~ ~~~I I 0 

S .. < .0 
20 

S6 0 10 it~~~~~~~~~~~~~~~~~ 

S0 0 

5 S S2 ...@...@@@@@@ 

0 1.0 1.5 2.0 2.5 
L*gL*g N 

FIGURETnT 1 
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An asymptotic relation of the form 

RN 1s7 C(s)N2 log ,B(s)N 

(for the lattice points obtained) would result in each group of points being asymp- 
totic to a straight line of slope ,B(s). Some irregularity is to be expected: the random 
search by which the lattice points were obtained causes some statistical irregularity 
in their quality, and the number-theoretical nature of the error bound also suggests 
that it will not behave smoothly. 

Table 8 gives the approximate slopes, for each s, that I obtained by a rough visual 
fit of a straight line to each group of points (no more refined procedure seems 
justified). 

TABLE 8 

s 2 3 4 5 6 7 8 

,B(s) 1.2 2.8 4.3 5.8 6.9 8.3 9.6 

These values are definitely lower than the 2(s - 1) that is the best that we can be 
sure-by theory-is obtainable; they are also higher than Sarygin's lower bound of 
s - 1. 

The x's appearing in Figure 1 represent a set of error bound coefficients obtained 
by a different method. In that calculation, the N's investigated were prime, so that 
good lattice points of the form (9) must exist. I obtained the best possible ones by 
exhaustive calculation of I RNF1 for all such lattice points. This lengthy calculation 
was done for s= 4; the highest N was 7001. The results suggest that the random 
search procedure yields quadrature formulas that are very nearly as accurate as those 
obtained by exhaustive search, and that convenient nonprime values of N are just as 
useable, for this method of integration, as primes. 

(Remark. Having several hundred error-bound coefficients in a computer file 
suggested looking at the relative frequencies of their lead digits. They are 

lead digit 1 2 3 4 5 6 7 8 9 

number of occurrences 185 127 74 57 52 47 34 33 27 

relative frequency .291 .200 .116 .090 .082 .074 .053 .052 .042 

This agrees well with Benford's "Law of Anomalous Numbers" [2].) 
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